Motoneuron development influences dorsal root ganglia survival and Schwann cell development in a vertebrate model of spinal muscular atrophy.
نویسندگان
چکیده
Low levels of the survival motor neuron protein (SMN) cause the disease spinal muscular atrophy. A primary characteristic of this disease is motoneuron dysfunction and paralysis. Understanding why motoneurons are affected by low levels of SMN will lend insight into this disease and to motoneuron biology in general. Motoneurons in zebrafish smn mutants develop abnormally; however, it is unclear where Smn is needed for motoneuron development since it is a ubiquitously expressed protein. We have addressed this issue by expressing human SMN in motoneurons in zebrafish maternal-zygotic (mz) smn mutants. First, we demonstrate that SMN is present in axons, but only during the period of robust motor axon outgrowth. We also conclusively demonstrate that SMN acts cell autonomously in motoneurons for proper motoneuron development. This includes the formation of both axonal and dendritic branches. Analysis of the peripheral nervous system revealed that Schwann cells and dorsal root ganglia (DRG) neurons developed abnormally in mz-smn mutants. Schwann cells did not wrap axons tightly and had expanded nodes of Ranvier. The majority of DRG neurons had abnormally short peripheral axons and later many of them failed to divide and died. Expressing SMN just in motoneurons rescued both of these cell types showing that their failure to develop was secondary to the developmental defects in motoneurons. Driving SMN just in motoneurons did not increase survival of the animal, suggesting that SMN is needed for motoneuron development and motor circuitry, but that SMN in other cells types factors into survival.
منابع مشابه
Schwann cell apoptosis during normal development and after axonal degeneration induced by neurotoxins in the chick embryo.
In the present work, we show that chick embryo Schwann cells die by apoptosis both during normal development and after axonal degeneration induced by neurotoxin treatment. Schwann cell apoptosis during development takes place during a period roughly coincidental with normally occurring motoneuron death. Administration of NMDA to chick embryos on embryonic day 7 induces extensive excitotoxic mot...
متن کاملKnockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding
Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by a loss of alpha motoneurons in the spinal cord. SMA is caused by low levels of the ubiquitously expressed survival motor neuron (Smn) protein. As it is unclear how low levels of Smn specifically affect motoneurons, we have modeled SMA in zebrafish, a vertebrate model organism with well-characterized motoneuron dev...
متن کاملDistinct and overlapping alterations in motor and sensory neurons in a mouse model of spinal muscular atrophy.
Motor neuron degeneration is the predominant pathological feature of spinal muscular atrophy (SMA). In patients with severe forms of the disease, additional sensory abnormalities have been reported. However, it is not clear whether the loss of sensory neurons is a common feature in severe forms of the disease, how many neurons are lost and how loss of sensory neurons compares with motor neuron ...
متن کاملDefective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy
Proximal spinal muscular atrophy (SMA) is a motoneuron disease for which there is currently no effective treatment. In animal models of SMA, spinal motoneurons exhibit reduced axon elongation and growth cone size. These defects correlate with reduced beta-actin messenger RNA and protein levels in distal axons. We show that survival motoneuron gene (Smn)-deficient motoneurons exhibit severe defe...
متن کاملApoptosis in the nervous system: morphological features, methods, pathology, and prevention.
For nearly 70 years apoptosis has been known to be a form of cell death distinct from necrosis as well as an important regressive event during the normal development of the nervous system. For example, in the chick, mouse, rat and human approximately 50% of postmitotic neurons die naturally during embryonic or fetal development. It is generally accepted that neurons die during this period by ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2015